2010-13 Field Commander Lite Wiring Manual

(single circuit board design - board label "Comm6 FC" - only 1 relay)

Section 1 – Pages 2-6 – Irrigation Pivot wiring.

Section 2 – Page 6 – Simple on/off monitor only – no control features

Section 1 – Irrigation System Wiring – Stop Only:

Warning: Only 4 wires are used on these installations – all unused wires must be capped or taped off individually to avoid damage to unit.

Safety circuit must be tested by the installer before AND after installation is finished.

NOTE ON ALL UNITS – BLACK WIRE WITH RED STRIPE IS NOT USED

Zimmatic:

- 1. Remove the Zimmatic brown (safety) wire from the terminal strip in the end tower box (Span Cable Side) and install our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the Zimmatic brown (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Brown/Black wire into the terminal strip with the other white (neutral) wires.

Valley:

- 1. Remove the Valley yellow (safety) wire from the terminal strip in the end tower box (Span Cable Side) and install our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the Valley yellow (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Brown/Black wire into the terminal strip with the other white (neutral) wires.

Pierce (Newer systems, example - CP600 pivots):

- 1. Remove the Pierce yellow (safety) wire from the terminal strip in the end tower box (Span cable wire coming from the center) and install our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the Pierce yellow (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Brown/Black wire into the terminal strip with the other white (neutral) wires.

Pierce (Older systems, example - P.93 pivots):

- 1. Remove the Pierce brown (safety) wire from the terminal strip in the end tower box (Span cable wire coming from the center) and install our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the Pierce brown (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Brown/Black wire into the terminal strip with the other white (neutral) wires.

Olson: (After 1980)

- 1. Remove the yellow (safety) wire from the terminal strip in the end tower box (Span Cable Side) and install our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the yellow (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Brown/Black wire into the terminal strip with the other white (neutral) wires.

Lockwood with 16v safety system:

- 1. Remove the 120v wire going to the safety transformer and connect our Black wire AND Red/Black wire in its place.
- 2. Use a wire nut to connect our Red wire to the wire that was removed from the transformer in step 1.
- 3. Install our Brown/Black wire in with the other neutral (white) wires. -see note-

-note- on older Lockwood systems, the power to the safety transformer is flip-flopped depending on which direction the system is moving. On these, change step 3 to this:

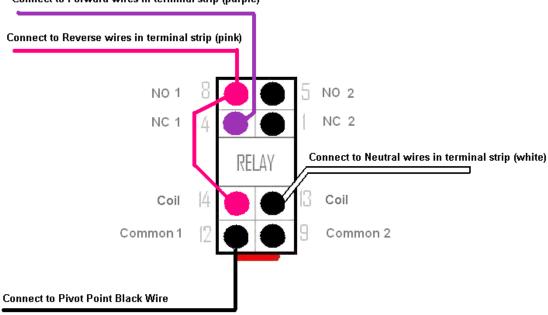
Install our Brown/Black wire into the other 120v terminal on the safety transformer. (with the wire that was not disturbed in step 1 or 2)

Reinke/Neutral Safety Wiring

Rienke – And Similar Neutral Safety Systems

- **Note** - On some Rienke pivots, the safety circuit begins at the second-to-last tower instead of at the end tower. (where the Brown Safety wire connects to the White Neutral wires) On these systems you will need to change the second-to-last tower and the end tower. In the end tower, make a jumper to connect the white neutral wires to the brown safety wire. At the second-to-last tower, locate the white wire that connects the overwatering timer contact (#10 on most) to the neutral wires on the terminal strip. Remove this white wire from the terminal strip, but leave it connected to the overwatering timer contact. Then, connect that white wire to the brown safety wire that goes out to the end tower. (this wire most likely is capped or not hooked up to anything in this second-to-last tower box)

You should now have a safety circuit that starts in the end tower box where the brown wire is connected to neutral, and then travels to the second-to-last tower box on the brown wire, goes to the overwatering timer contact #10, then exits the overwatering timer on terminal #8, goes to the limit switch, then leaves the limit switch and goes to the next tower closer to the main panel.


AFTER COMPLETING THIS, YOU MUST TEST THE SAFETY TO BE CERTAIN THE SYSTEM WORKS CORRECTLY. WITH THE SYSTEM RUNNING, DISCONNECT THE BROWN SAFETY WIRE FROM THE TERMINAL STRIP IN THE END TOWER BOX – THIS SHOULD SAFETY THE SYSTEM OFF IF THE RE-WIRING WAS DONE CORRECTLY.

ONLY AFTER THIS SAFETY TEST PASSES, THEN PROCEED TO STEP 1 OF THE PIVOT POINT WIRING BELOW.

NOTE ON ALL UNITS – BLACK WIRE WITH RED STRIPE IS NOT USED

- 1. Remove the Rienke brown (safety) wire from the terminal strip in the end tower box (Span Cable Side) and install our Red/Black AND Brown/Black wires in its place. See Note at top of page -
- 2. Use a wire nut to connect our Red wire to the Rienke brown (safety) wire that was removed from the terminal strip in step 1.
- 3. Install our Black wire into the relay assembly as shown (see Picture 1 below) Relay part number W78ARCSX-11, and Base part number 70-459-1
- 4. Run jumper wires from the forward and reverse on the terminal strip and install them into the relay as shown (see Picture 1 below this gives the Pivot Point 120v on the black wire no matter which direction the pivot is moving)

Picture 1 – Additional Relay for Rienke – (other neutral safety type pivots similar)

Connect to Forward wires in terminal strip (purple)

TL pivot / Engine Shutdown - DC Powered Version:

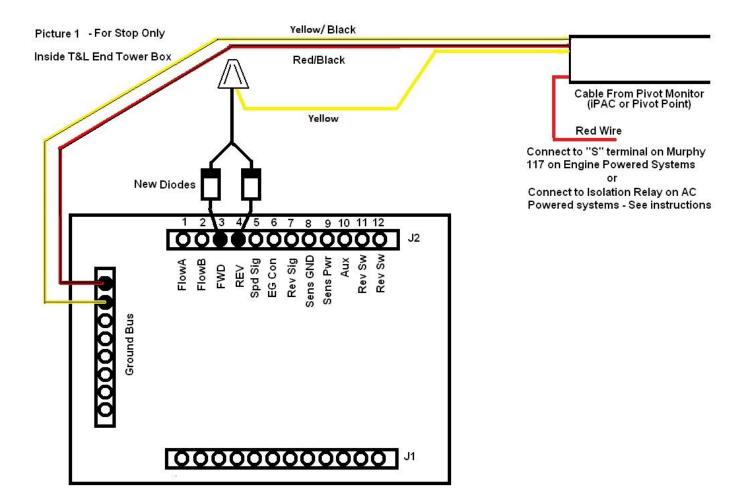
Warning: This unit has been specially built for TL pivots and/or for shutting down diesel/gas engines that use a Murphy switch system.

Mounting the unit at the Engine, Center of pivot, or by running wire out to the first tower:

Yellow Wire - 7-28v DC Yellow/Black Wire - Ground Red Wire - Normally Open Relay inside the Field Commander Red/Black - Common on relay inside the Field Commander

- 1. Connect Yellow/Black to Ground
- Connect Yellow to 7-28 VDC that is only on when the engine is running. 2.
- 3. Connect Red/Black to Ground
- Connect Red Wire to S terminal of Murphy switch (this will ground the Murphy switch and shut down 4. the engine/pivot when a command is sent via the web)

Using on end tower of TL pivot with Precision Point Control: (24 volt controls at the end tower)


1 In the end tower box, connect our Red/Black wire and our Yellow/Black wire to the Ground Bus in picture 1

2 In the end tower box, connect our Yellow wire to a new diode pair (from the TL kit available from AgSense) attached to FWD and REV as shown in picture 1 (MUST ADD NEW DIODE PAIR – existing diode pair is to run the speed sensor only – do not modify or remove the original pair if your system has them – just add the two new diodes to the FWD and REV terminals that the original diode pair is already in.)

3 In the end tower box, connect our Red wire to an unused span cable wire that goes back to the center of the pivot to the T&L Point Control Panel.

4 At the center of the pivot, the span cable wire that was used in step 3 must be connected correctly to shut off the pivot one of these two ways depending on how the Point Control Panel is powered:

- A. On pivots being powered from the 12v battery of the diesel/gas engine, connect the wire from step 3 to terminal 11 in the T&L Point Control Panel (if the Murphy switch 117 "s" terminal is wired into the Point Control Panel) If the Murphy switch is not wired into the Point Control Panel, you must run the wire from step 3 directly to the Murphy 117 "s" terminal.
- B. On pivots being powered by AC, an isolation relay must be installed in the Point Control Panel. This relay must be a 24v DC Coil relay that is Normally Open.
 - a. Connect one terminal of the relay coil to the wire from step 3.
 - b. Connect the other terminal of the relay coil to terminal 10 in the Point Control Panel (24v DC)
 - c. Next, if the Murphy 117 is wired into the Point Control Panel, connect the "Common" terminal of the Isolation relay to terminal 12 in the Point Control Panel (AC Neutral). Then connect the "Normally Open" terminal of the isolation relay to terminal 11 in the Point Control panel (Murphy 117 "s").
 - d. If the Murphy 117 is not wired into the Point Control Panel, you must run wire from terminal 11 in the Point Control panel to the Murphy 117 "s" terminal, and run wire from terminal 12 in the Point Control panel to AC Neutral in the electric panel that the Murphy switch is in.

Section 3

Simple Power On/Off Monitor Wiring:

This is only to monitor if Power to a device is on or off – there are no controls.

NOTE ON ALL UNITS – BLACK WIRE WITH RED STRIPE IS NOT USED

120v AC Device Monitor system:

Brown/Black – Neutral Black Wire – 120v AC

OR

7-40v DC Device Monitor system:

Yellow/Black – Ground Yellow – 7-40v DC

Power Requirements for these units:

DC Powered Unit 7-40V DC:

At 12v DC: 1.0A MAX 0.1A - 0.5A during normal operation

120vAC Powered Unit:

At 120v AC: 0.25A MAX 0.05A - 0.15A during normal operation

The above numbers are the current required for our unit to operate. Below is the current the relays in our box can control:

On both AC and DC units, each relay can handle a peak max of 5A, 3A constant (at a max voltage of 120vAC, or 30vDC).